BASIC ELECTRONICS (15ELN15/15ELN25) CBCS SCHEME AND SYLLABUS,NOTES

Posted by: INDUDHAR GAVASI
BASIC ELECTRONICS 
 [As per Choice Based Credit System (CBCS) scheme] 
(Effective from the academic year 2015 -2016) SEMESTER - I/II 

Subject Code - 15ELN15 / 15ELN25                             IA Marks         20 
Number of Lecture Hours/Week           04                  Exam Marks   80 
Total Number of Lecture Hours             50                  Exam Hours   03 
CREDITS - 04 

Course objectives:  

Course objectives:  

The course objective is to make students of all the branches of Engineering to understand the efficacy of Electronic principles which are pervasive in engineering applications 


<img src=”http://www.sweetwhatsappstatus.in/photo.jpg” alt=”BASIC ELECTRONICS”/>

Module -1 
Semiconductor Diodes and Applications (Text-1): p-n junction 
     diode, Characteristics and Parameters, Diode approximations, DC 
     load line analysis, Half-wave rectifier, Two-diode Full-wave rectifier, 
     Bridge rectifier, Capacitor filter circuit (only qualitative approch), 
     Zener diode voltage regulators: Regulator circuit with no load, 
     Loaded Regulator. Numerical examples as applicable. 

Bipolar Junction Transistors: BJT operation, BJT Voltages and 
     Currents, BJT amplification, Common Base, Common Emitter and 
     Common Collector Characteristics, Numerical examples as 
     applicable.             

Module -2 
BJT Biasing (Text-1): DC Load line and Bias Point, Base Bias, 
     Voltage divider Bias, Numerical examples as applicable.       
            
Introduction to Operational Amplifiers (Text-2): Ideal OPAMP, 
      Inverting and Non Inverting OPAMP circuits, OPAMP applications: 
      voltage follower, addition, subtraction, integration, differentiation; 
      Numerical examples as applicable




Module – 3 
Digital Electronics (Text-2): Introduction, Switching and Logic 
       Levels, Digital Waveform (Sections 9.1to 9.3). Number Systems: 
       Decimal Number System, Binary Number System, Converting 
       Decimal to Binary, Hexadecimal Number System: Converting 
       Binary to Hexadecimal, Hexadecimal to Binary, Converting 
       Hexadecimal to Decimal, Converting Decimal to Hexadecimal, Octal 
       Numbers: Binary to Octal Conversion. Complement of Binary 
       Numbers. Boolean Algebra Theorems, De Morgan’s theorem. Digital 
       Circuits:  Logic gates, NOT Gate, AND Gate, OR Gate, XOR Gate, 
       NAND Gate, NOR Gate, X-NOR Gate. Algebraic Simplification, 
       NAND and NOR Implementation (Sections 11.7 and 11.8): NAND 
       Implementation, NOR Implementation. Half adder, Full adder


Module-4 
 Flip-Flops (Text-2): Introduction to Flip-Flops (Section 12.1), NAND 
       Gate Latch/ NOR Gate Latch, RS Flip-Flop, Gated Flip-Flops: 
       Clocked RS Flip-Flop (Sections 12.3 to 12.5).                     
       Microcontrollers (Ref.1): Introduction to Microcontrollers, 8051 
       Microcontroller Architecture and an example of Microcontroller 
       based stepper motor control system (only Block Diagram approach).

  Module-5 
Communication Systems (Text-2): Introduction, Elements of 
       Communication Systems, Modulation: Amplitude Modulation, 
       Spectrum Power, AM Detection (Demodulation), Frequency and 
       Phase Modulation.  Amplitude and Frequency Modulation: A 
       comparison.   
                                   
Transducers (Text-2): Introduction, Passive Electrical Transducers, 
       Resistive Transducers, Resistance Thermometers, Thermistor. 
       Linear Variable Differential Transformer (LVDT).  Active Electrical 
       Transducers, Piezoelectric Transducer, Photoelectric Transducer


 Course outcomes: 
After studying this course, students will be able to: 
• Appreciate the significance of electronics in different applications,  
• Understand the applications of diode in rectifiers, filter circuits and 
wave shaping, 
• Apply the concept of diode in rectifiers, filters circuits 
• Design simple circuits like amplifiers (inverting and non inverting), 
comparators, adders, integrator and differentiator using OPAMPS, 
• Compile the different building blocks in digital electronics using logic 
gates and implement simple logic function using basic universal 
gates, and 
• Understand the functioning of a communication system, and different 
modulation technologies, and 
• Understand the basic principles of different types of Transuducers. 


Question paper pattern: 

• The question paper will have ten questions.  

• Each full Question consisting of 16 marks 

• There will be 2 full questions(with a maximum of  four sub 

questions) from each module.  

• Each full question will have sub questions covering all the topics 

under a module.  

• The students will have to answer 5 full questions, selecting one full 

question from each module. 
<img src=”http://www.sweetwhatsappstatus.in/photo.jpg” alt=”BASIC ELECTRONICS”/>




GET IT IN PDF


0 Comments:

Post a Comment